
 Loans & Annuities 

Notation and Terminology 

                           L :   amount of a loan in dollars 

                           x :   monthly payment or deposit 

                           r :   yearly interest rate as a decimal  

                           n :   total number of payments or deposits 

 

Loan Matrix 
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Example 1  

 Suppose you have just bought a house for $420,000. After putting a down payment of  

 $30,000 you take out a mortgage for the remaining $390,000 at an interest rate of 4.7%   

 per year. Use matrices to determine the monthly payment that will pay this loan in 
 

a. 30 years (360 monthly installments). 
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       For the loan to be paid off, the outstanding balance must be 0. Therefore,   

                   1.59302945096 –  787.58  0x    
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787.58
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       The monthly payment to pay off $390,000 in 30 years is $2,022.69 ( 4.7%r  ). 

                                       b.  20 years (240 monthly installments). 
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         The monthly payment to pay off $390,000 in 20 years is $2,509.63. 

                                       c.  5 years (60 monthly installments). 
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       The monthly payment to pay off $390,000 in 5 years is $7,306.30. 



Example 2   

 With reference to Example 1, determine the amount outstanding on loan (a) 15 years   

  into the loan (180 payments have been made).   

        
180

0.047
3900001 1

12
2022.69 2022.69

0 1

260905.68
 
               

 

 

    Therefore, the outstanding balance of the loan after 15 years will be $ 260,905.68. 

Example 3   

 With reference to Example 1, determine the amount outstanding on loan (b) 5 years     

  into the loan (60 payments have been made).   
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    Therefore, the outstanding balance of the loan after 5 years will be $ 323,717.94. 

Example 4   

 With reference to Example 1, determine the amount outstanding on loan (c) after     

  50 payments have been made.   
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    Therefore, the outstanding balance of the loan after 50 payments will be $ 71,513.37. 

 

 

 

 

 

 



Annuities 

 
 An ordinary annuity is a sequence of periodic deposits (usually monthly) made at the 

 end of each period (month), for the purpose accumulating what we call a future value to 

 be used either for retirement, to finance college education, or some other purpose. 

 

 

Annuity Matrix 
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Example 1   

 

Find the future value of an ordinary annuity involving deposits of $300 per month at 

a yearly interest rate of 5.5% per year after 

 

a. ten years. 
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                The future value of the annuity after 10 years will be $47,852.27. 



                                                 b.  twenty-five years. 
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                The future value of the annuity after 25 years will be $192,611.22. 

Example 2   

Starting today, you decide to deposit $450 per month in an ordinary annuity that earns  

annual interest of 6.5%.  After 40 years you retire and your contributions stop. However,   

you remain invested at the more conservative rate of 4.5%. 
 

a. How much would the annuity be worth at the time you retire?  
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               At retirement, the future value of this annuity will be $1,027,628.63. 

 

  b.   Suppose you receive a pension of $5,000 a month in retirement for a 

         period of 30 years. Would you have run out of funds by then? Explain. 
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                        No, at that point the annuity is worth $157,073.94.  

 

          c.  What is the maximum pension you can receive for exactly 30 years? 
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                                       3954004.67574 759.386 0 5206.84x x        

                               Maximum pension:  $5,206.84  ( per month for 30 years) 


